MKL for Robust Multi-modality AD Classification
نویسندگان
چکیده
We study the problem of classifying mild Alzheimer's disease (AD) subjects from healthy individuals (controls) using multi-modal image data, to facilitate early identification of AD related pathologies. Several recent papers have demonstrated that such classification is possible with MR or PET images, using machine learning methods such as SVM and boosting. These algorithms learn the classifier using one type of image data. However, AD is not well characterized by one imaging modality alone, and analysis is typically performed using several image types--each measuring a different type of structural/functional characteristic. This paper explores the AD classification problem using multiple modalities simultaneously. The difficulty here is to assess the relevance of each modality (which cannot be assumed a priori), as well as to optimize the classifier. To tackle this problem, we utilize and adapt a recently developed idea called Multi-Kernel learning (MKL). Briefly, each imaging modality spawns one (or more kernels) and we simultaneously solve for the kernel weights and a maximum margin classifier. To make the model robust, we propose strategies to suppress the influence of a small subset of outliers on the classifier--this yields an alternative minimization based algorithm for robust MKL. We present promising multi-modal classification experiments on a large dataset of images from the ADNI project.
منابع مشابه
Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population
Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning t...
متن کاملMulti-Kernel Learning with Dartel Improves Combined MRI-PET Classification of Alzheimer’s Disease in AIBL Data: Group and Individual Analyses
Magnetic resonance imaging (MRI) and positron emission tomography (PET) are neuroimaging modalities typically used for evaluating brain changes in Alzheimer's disease (AD). Due to their complementary nature, their combination can provide more accurate AD diagnosis or prognosis. In this work, we apply a multi-modal imaging machine-learning framework to enhance AD classification and prediction of...
متن کاملSelecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: A comparison across functional and structural imaging modalities and atlases
Background Machine learning techniques such as support vector machine (SVM) have been applied recently in order to accurately classify individuals with neuropsychiatric disorders such as Alzheimer's disease (AD) based on neuroimaging data. However, the multivariate nature of the SVM approach often precludes the identification of the brain regions that contribute most to classification accuracy....
متن کاملIntegrative analysis of multi-dimensional imaging genomics data for Alzheimer's disease prediction
In this paper, we explore the effects of integrating multi-dimensional imaging genomics data for Alzheimer's disease (AD) prediction using machine learning approaches. Precisely, we compare our three recent proposed feature selection methods [i.e., multiple kernel learning (MKL), high-order graph matching based feature selection (HGM-FS), sparse multimodal learning (SMML)] using four widely-use...
متن کاملRecognition of Alzheimer's disease and Mild Cognitive Impairment with multimodal image-derived biomarkers and Multiple Kernel Learning
Computer-Aided Diagnosis (CAD) of Alzheimer's disease (AD) has drawn the attention of computer vision research community over the last few years. Several attempts have been made to adapt pattern recognition approaches to specific neuroimaging data such as Structural MRI (sMRI) for early AD diagnosis. One strategy is to boost the discrimination power of such approaches by integrating complementa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 12 Pt 2 شماره
صفحات -
تاریخ انتشار 2009